题目内容

【题目】如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴交于点C(0,4).

(1)求直线BC与抛物线的解析式;
(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,当 MN的值最大时,求△BMN的周长.
(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1 , △ABN的面积为S2 , 且S1=4S2 , 求点P的坐标.

【答案】
(1)

解:设直线BC的解析式为y=mx+n,

将B(4,0),C(0,4)两点的坐标代入,

得,

所以直线BC的解析式为y=﹣x+4;

将B(4,0),C(0,4)两点的坐标代入y=x2+bx+c,

得,

所以抛物线的解析式为y=x2﹣5x+4


(2)

解:如图1,

设M(x,x2﹣5x+4)(1<x<4),则N(x,﹣x+4),

∵MN=(﹣x+4)﹣(x2﹣5x+4)=﹣x2+4x=﹣(x﹣2)2+4,

∴当x=2时,MN有最大值4;

∵MN取得最大值时,x=2,

∴﹣x+4=﹣2+4=2,即N(2,2).

x2﹣5x+4=4﹣5×2+4=﹣2,即M(2,﹣2),

∵B(4.0)

可得BN=2 ,BM=2

∴△BMN的周长=4+2 +2 =4+4


(3)

解:令y=0,解方程x2﹣5x+4=0,得x=1或4,

∴A(1,0),B(4,0),

∴AB=4﹣1=3,

∴△ABN的面积S2=×3×2=3,

∴平行四边形CBPQ的面积S1=4S2=12.

如图2,

设平行四边形CBPQ的边BC上的高为BD,则BC⊥BD.

∵BC=4

∴BCBD=12,

∴BD=

过点D作直线BC的平行线,交抛物线与点P,交x轴于点E,在直线DE上截取PQ=BC,连接CQ,则四边形CBPQ为平行四边形.

∵BC⊥BD,∠OBC=45°,

∴∠EBD=45°,

∴△EBD为等腰直角三角形,由勾股定理可得BE= BD=3,

∵B(4,0),

∴E(1,0),

设直线PQ的解析式为y=﹣x+t,

将E(1,0),代入,得﹣1+t=0,解得t=1

∴直线PQ的解析式为y=﹣x+1.

解方程组,

得,

∵点P是抛物线在x轴下方图象上任意一点,

∴点P的坐标为P(3,2)


【解析】(1)直接用待定系数法求出直线和抛物线解析式;(2)先求出最大的MN,再求出M,N坐标即可求出周长;(3)先求出△ABN的面积,进而得出平行四边形CBPQ的面积,从而求出BD,联立方程组求解即可.
【考点精析】关于本题考查的二次函数的图象和二次函数的性质,需要了解二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网