题目内容
【题目】如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴交于点C(0,4).
(1)求直线BC与抛物线的解析式;
(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,当 MN的值最大时,求△BMN的周长.
(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1 , △ABN的面积为S2 , 且S1=4S2 , 求点P的坐标.
【答案】
(1)
解:设直线BC的解析式为y=mx+n,
将B(4,0),C(0,4)两点的坐标代入,
得, ,
∴
所以直线BC的解析式为y=﹣x+4;
将B(4,0),C(0,4)两点的坐标代入y=x2+bx+c,
得, ,
∴
所以抛物线的解析式为y=x2﹣5x+4
(2)
解:如图1,
设M(x,x2﹣5x+4)(1<x<4),则N(x,﹣x+4),
∵MN=(﹣x+4)﹣(x2﹣5x+4)=﹣x2+4x=﹣(x﹣2)2+4,
∴当x=2时,MN有最大值4;
∵MN取得最大值时,x=2,
∴﹣x+4=﹣2+4=2,即N(2,2).
x2﹣5x+4=4﹣5×2+4=﹣2,即M(2,﹣2),
∵B(4.0)
可得BN=2 ,BM=2
∴△BMN的周长=4+2 +2 =4+4
(3)
解:令y=0,解方程x2﹣5x+4=0,得x=1或4,
∴A(1,0),B(4,0),
∴AB=4﹣1=3,
∴△ABN的面积S2=×3×2=3,
∴平行四边形CBPQ的面积S1=4S2=12.
如图2,
设平行四边形CBPQ的边BC上的高为BD,则BC⊥BD.
∵BC=4 ,
∴BCBD=12,
∴BD= .
过点D作直线BC的平行线,交抛物线与点P,交x轴于点E,在直线DE上截取PQ=BC,连接CQ,则四边形CBPQ为平行四边形.
∵BC⊥BD,∠OBC=45°,
∴∠EBD=45°,
∴△EBD为等腰直角三角形,由勾股定理可得BE= BD=3,
∵B(4,0),
∴E(1,0),
设直线PQ的解析式为y=﹣x+t,
将E(1,0),代入,得﹣1+t=0,解得t=1
∴直线PQ的解析式为y=﹣x+1.
解方程组, ,
得, 或 ,
∵点P是抛物线在x轴下方图象上任意一点,
∴点P的坐标为P(3,2)
【解析】(1)直接用待定系数法求出直线和抛物线解析式;(2)先求出最大的MN,再求出M,N坐标即可求出周长;(3)先求出△ABN的面积,进而得出平行四边形CBPQ的面积,从而求出BD,联立方程组求解即可.
【考点精析】关于本题考查的二次函数的图象和二次函数的性质,需要了解二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能得出正确答案.
【题目】如图,P是AB所对弦AB上一动点,过点P作PM⊥AB交AB于点M,连接MB,过点P作PN⊥MB于点N.已知AB=6cm,设A、P两点间的距离为xcm,P、N两点间的距离为ycm.(当点P与点A或点B重合时,y的值为0)
小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小东的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如下表:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y/cm | 0 | 2.0 | 2.3 | 2.1 | 0.9 | 0 |
(说明:补全表格时相关数值保留一位小数)
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.
(3)结合画出的函数图象,解决问题:当△PAN为等腰三角形时,AP的长度约为cm.