题目内容
【题目】小明到服装店进行社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元,乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.
(1)若购进这100件服装的费用不得超过7500元,则甲种服装最多购进多少件??
(2)在(1)的条件下,该服装店对甲种服装以每件优惠a(0<a<20)元的价格进行促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?
【答案】
(1)解:设甲种服装购进x件,则乙种服装购进(100﹣x)件,
根据题意得:
,
解得:65≤x≤75,
∴甲种服装最多购进75件
(2)解:设总利润为W元,
W=(120﹣80﹣a)x+(90﹣60)(100﹣x)
即w=(10﹣a)x+3000.
①当0<a<10时,10﹣a>0,W随x增大而增大,
∴当x=75时,W有最大值,即此时购进甲种服装75件,乙种服装25件;
②当a=10时,所以按哪种方案进货都可以;
③当10<a<20时,10﹣a<0,W随x增大而减小.
当x=65时,W有最大值,即此时购进甲种服装65件,乙种服装35件
【解析】(1)设甲种服装购进x件,则乙种服装购进(100﹣x)件,然后根据购进这100件服装的费用不得超过7500元,列出不等式解答即可;(2)首先求出总利润W的表达式,然后针对a的不同取值范围进行讨论,分别确定其进货方案.
【考点精析】认真审题,首先需要了解一元一次不等式组的应用(1、审:分析题意,找出不等关系;2、设:设未知数;3、列:列出不等式组;4、解:解不等式组;5、检验:从不等式组的解集中找出符合题意的答案;6、答:写出问题答案).
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目