题目内容

【题目】在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,E,F分别是AC,BC边上一点.
(1)求证:
(2)若CE= AC,BF= BC,求∠EDF的度数.

【答案】
(1)解:∵CD⊥AB,

∴∠A+∠ACD=90°

又∵∠A+∠B=90°

∴∠B=∠ACD

∴Rt△ADC∽Rt△CDB


(2)解:∵ = =

又∵∠ACD=∠B,

∴△CED∽△BFD;

∴∠CDE=∠BDF;

∴∠EDF=∠EDC+∠CDF=∠BDF+∠CDF=∠CDB=90°


【解析】(1)证相关线段所在的三角形相似即可,即证Rt△ADC∽Rt△CDB;(2)易证得CE:BF=AC:BC,联立(1)的结论,即可得出CE:BF=CD:BD,由此易证得△CED∽△BFD,即可得出∠CDE=∠BDF,由于∠BDF和∠CDF互余,则∠EDC和∠CDF也互余,由此可求得∠EDF的度数.
【考点精析】通过灵活运用相似三角形的判定与性质,掌握相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网