题目内容
【题目】如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OEOP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确的结论是( )
A.①③B.①②③C.①③④D.①②③④
【答案】A
【解析】
由四边形ABCD是正方形,得到AD=BC,∠DAB=∠ABC=90°,根据全等三角形的性质得到∠P=∠Q,根据余角的性质得到AQ⊥DP,故①正确;根据相似三角形的性质得到AO2=ODOP,由OD≠OE,得到OA2≠OEOP,故②错误;根据全等三角形的性质得到CF=BE,DF=CE,于是得到S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四边形OECF,故③正确;根据相似三角形的性质得到BE=,求得QE=,QO=,OE=,由三角函数的定义即可得到结论.
解:∵四边形ABCD是正方形,
∴AD=BC,∠DAB=∠ABC=90°,
∵BP=CQ,
∴AP=BQ,
在△DAP与△ABQ中,
∴△DAP≌△ABQ(SAS),
∴∠P=∠Q,
∵∠Q+∠QAB=90°,
∴∠P+∠QAB=90°,
∴∠AOP=90°,
∴AQ⊥DP,故①正确;
∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,
∴∠DAO=∠P,
∴△DAO∽△APO,
∴,
∴AO2=ODOP,
∵AE>AB,
∴AE>AD,
∴OD≠OE,
∴OA2≠OEOP,故②错误;
在△CQF与△BPE中,
∴△CQF≌△BPE(AAS),
∴CF=BE,
∴DF=CE,
在△ADF与△DCE中,
∴△ADF≌△DCE(SAS),
∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,
即S△AOD=S四边形OECF,故③正确;
∵BP=1,AB=3,
∴AP=4,
∵AD∥BC,
∴△PBE∽△PAD,
∴,
∴BE=,
∴QE=,
∵△QOE∽△PAD,
∴,
∴QO=,OE=span>,
∴AO=5﹣QO=,
∴tan∠OAE=,故④错误;
故选:A.