题目内容
【题目】一座隧道的截面由抛物线和长方形构成,长方形的长为8m,宽为2m,隧道最高点P位于AB的中央且距地面6m,建立如图所示的坐标系:
(1)求抛物线的解析式;
(2)一辆货车高4m,宽2m,能否从该隧道内通过,为什么?
(3)如果隧道内设双行道,那么这辆货车是否可以顺利通过,为什么?
【答案】(1)y=﹣+6;(2)货车可以通过;(3)货车可以通过.
【解析】
(1)设出抛物线的解析式,根据抛物线顶点坐标,代入解析式;(2)令y=4,解出x,然后将|x1﹣x2|与车宽2m作比较;(3)隧道内设双行道后,将(2)求出y=4时的抛物线线上两点的距离与2个车宽即4m作比较.
解:(1)由题意可知抛物线的顶点坐标(4,6),
设抛物线的方程为y=a(x﹣4)2+6,
又因为点A(0,2)在抛物线上,
所以有2=a(0﹣4)2+6.
所以a=﹣.
因此有:y=﹣+6.
(2)令y=4,则有4=﹣+6,
解得x1=4+2,x2=4﹣2,
|x1﹣x2|=4>2,
∴货车可以通过;
(3)由(2)可知|x1﹣x2|=,
∴货车可以通过.
【题目】为了掌握八年级数学考试卷的命题质量与难度系数,命题组教师赴外地选取一个水平相当的八年级班级进行预测,将考试成绩分布情况进行处理分析,制成如图表(成绩得分均为整数):
根据图表中提供的信息解答下列问题:
组别 | 成绩分组 | 频数 |
A | 47.5~59.5 | 2 |
B | 59.5~71.5 | 4 |
C | 71.5~83.5 | a |
D | 83.5~95.5 | 10 |
E | 95.5~107.5 | b |
F | 107.5~120 | 6 |
(1)频数分布表中的a= ,b= ;扇形统计图中的m= ,n= ;
(2)已知全区八年级共有200个班(平均每班40人),用这份试卷检测,108分及以上为优秀,预计优秀的人数约为 人,72分及以上为及格,预计及格的人数约为 人;
(3)补充完整频数分布直方图.