题目内容
【题目】当m,n是正实数,且满足m+n=mn时,就称点P(m, )为“完美点”,已知点A(0,5)与点M都在直线y=-x+b上,点B,C是“完美点”,且点B在线段AM上,若MC= ,AM=4 ,求△MBC的面积.
【答案】
【解析】解:∵m+n=mn且m,n是正实数,
∴ +1=m,即 =m-1,
∴P(m,m-1),
即“完美点”P在直线y=x-1上,
∵点A(0,5)在直线y=-x+b上,
∴b=5,
∴直线AM:y=-x+5,
∵“完美点”B在直线AM上,
∴由
解得 ,
∴B(3,2),
∵一、三象限的角平分线y=x垂直于二、四象限的角平分线y=-x,而直线y=x-1与直线y=x平行,直线y=-x+5与直线y=-x平行,
∴直线AM与直线y=x-1垂直,
∵点B是直线y=x-1与直线AM的交点,
∴垂足是点B,
∵点C是“完美点”,
∴点C在直线y=x-1上,
∴△MBC是直角三角形,
∵B(3,2),A(0,5),
∴AB=3 ,
∵AM=4 ,∴BM= ,
又∵CM= ,
∴BC=1,
∴S△MBC= BMBC= .
【考点精析】本题主要考查了一次函数的性质的相关知识点,需要掌握一般地,一次函数y=kx+b有下列性质:(1)当k>0时,y随x的增大而增大(2)当k<0时,y随x的增大而减小才能正确解答此题.
练习册系列答案
相关题目