题目内容

【题目】以四边形ABCD的边AB、BC、CD、DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E、F、G、H,顺次连接这四个点,得四边形EFGH.

(1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状(不要求证明);
(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=α(0°<α<90°),
①试用含α的代数式表示∠HAE;
②求证:HE=HG;
③四边形EFGH是什么四边形?并说明理由.

【答案】
(1)

解:四边形EFGH的形状是正方形


(2)

解:①∠HAE=90°+α,

在平行四边形ABCD中AB∥CD,

∴∠BAD=180°﹣∠ADC=180°﹣α,

∵△HAD和△EAB是等腰直角三角形,

∴∠HAD=∠EAB=45°,

∴∠HAE=360°﹣∠HAD﹣∠EAB﹣∠BAD=360°﹣45°﹣45°﹣(180°﹣a)=90°+α,

答:用含α的代数式表示∠HAE是90°+α

②证明:∵△AEB和△DGC是等腰直角三角形,

∴AE= AB,DG= CD,

在平行四边形ABCD中,AB=CD,

∴AE=DG,

∵△AHD和△DGC是等腰直角三角形,

∴∠HDA=∠CDG=45°,

∴∠HDG=∠HDA+∠ADC+∠CDG=90°+α=∠HAE,

∵△AHD是等腰直角三角形,

∴HA=HD,

∴△HAE≌△HDG,

∴HE=HG.

③答:四边形EFGH是正方形,

理由是:由②同理可得:GH=GF,FG=FE,

∵HE=HG,

∴GH=GF=EF=HE,

∴四边形EFGH是菱形,

∵△HAE≌△HDG,

∴∠DHG=∠AHE,

∵∠AHD=∠AHG+∠DHG=90°,

∴∠EHG=∠AHG+∠AHE=90°,

∴四边形EFGH是正方形.


【解析】(1)根据等腰直角三角形的性质得到∠E=∠F=∠G=∠H=90°,求出四边形是矩形,根据勾股定理求出AH=HD= AD,DG=GC= CD,CF=BF= BC,AE=BE= AB,推出EF=FG=GH=EH,根据正方形的判定推出四边形EFGH是正方形即可;(2)①根据平行四边形的性质得出,∠BAD=180°﹣α,根据△HAD和△EAB是等腰直角三角形,得到∠HAD=∠EAB=45°,求出∠HAE即可;②根据△AEB和△DGC是等腰直角三角形,得出AE= AB,DG= CD,平行四边形的性质得出AB=CD,求出∠HDG=90°+a=∠HAE,根据SAS证△HAE≌△HDG,根据全等三角形的性质即可得出HE=HG;③与②证明过程类似求出GH=GF,FG=FE,推出GH=GF=EF=HE,得出菱形EFGH,证△HAE≌△HDG,求出∠AHD=90°,∠EHG=90°,即可推出结论.
【考点精析】利用等腰直角三角形和正方形的判定方法对题目进行判断即可得到答案,需要熟知等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°;先判定一个四边形是矩形,再判定出有一组邻边相等;先判定一个四边形是菱形,再判定出有一个角是直角.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网