题目内容

已知如图,△ABC和△DCE都是等边三角形,若△ABC的边长为1,则△BAE的面积是______.
四边形ABCD和四边形BEFG都是正方形,若正方形ABCD的边长为4,则△FAC的面积是______.

如果两个正多边形ABCDE…和BPKGY…是正n(n≥3)边形,正多边形ABCDE…的边长是2a,则△KCA的面积是______.(结果用含有a、n的代数式表示)
如图1,
∵△ABC与△CDE均为等边三角形,
∴∠DCE=∠BAC=60°,
∴ABCE,
过点C作CF⊥AB于点F,则CF即为△BAE的高,
∴△ABC与△BAE同底等高,
∴S△BAE=S△ABC=
1
2
AB•CF=
1
2
×1×
3
2
=
3
4

如图2,连接BF,过点B作BM⊥AC于点M,同理可证ACBF,故△FAC与△ABC同底等高,
∴S△FAC=S△ABC=
1
2
×4×4=8;
如图3,
正多边形ABCDE…中,过点B作BN⊥AC于点N,同上可得S△KCA=S△ABC
∵多边形是正多边形,BN⊥AC,
∴∠NBC=
90°×(n-2)
n
,AC=2NC=2AN,
∵BC=2a,
∴在Rt△BCN中,NC=BC•sin
90°×(n-2)
n
,BN=BC×cos
90°×(n-2)
n

∴S△KCA=S△ABC=
1
2
AC•BN=
1
2
×2×2a×sin
90°×(n-2)
n
×2a×cos
90°×(n-2)
n
=4a2•sin
90°(n-2)
n
×cos
90°(n-2)
n
=2a2sin
360°
n


故答案为:2a2sin
360°
n
或(4a2•sin
90°(n-2)
n
×cos
90°(n-2)
n
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网