题目内容

【题目】在平面直角坐标系中,O是坐标原点,ABCD的顶点A的坐标为(﹣2,0),点D的坐标为(0,2),点B在x轴的正半轴上,点E为线段AD的中点.

(Ⅰ)如图1,求∠DAO的大小及线段DE的长;

(Ⅱ)过点E的直线l与x轴交于点F,与射线DC交于点G.连接OE,△OEF′是△OEF关于直线OE对称的图形,记直线EF′与射线DC的交点为H,△EHC的面积为3

①如图2,当点G在点H的左侧时,求GH,DG的长;

②当点G在点H的右侧时,求点F的坐标(直接写出结果即可).

【答案】(Ⅰ)∠DAO=60°,DE=2; (Ⅱ)①GH=6,DG=﹣3+;②F(﹣5﹣,0).

【解析】解:(Ⅰ)∵A(﹣2,0),D(0,2)∴AO=2,DO=2,∴tan∠DAO==

∴∠DAO=60°,∴∠ADO=30°,∴AD=2AO=4,∵点E为线段AD中点,∴DE=2;

(Ⅱ)①如图2,

过点E作EM⊥CD,∴CD∥AB,∴∠EDM=∠DAB=60°,∴EM=DEsin60°=,∴GH=6,

∵CD∥AB,∴∠DGE=∠OFE,

∵△OEF′是△OEF关于直线OE的对称图形,∴△OEF′≌△OEF,∴∠OFE=∠OF′E,

∵点E是AD的中点,∴OE=AD=AE,

∵∠EAO=60°,∴△EAO是等边三角形,∴∠EOA=60°,∠AEO=60°,

∵△OEF′≌△OEF,∴∠EOF′=∠EOA=60°,

∴∠EOF′=∠AEO,∴AD∥OF′,∴∠OF′E=∠DEH,∴∠DEH=∠DGE,

∵∠DEH=∠EDG,∴△DHE∽△DEG,∴,∴DE2=DG×DH,

设DG=x,则DH=x+6,∴4=x(x+6),∴x1=﹣3+,x2=﹣3﹣,∴DG=﹣3+

②如图3,

过点E作EM⊥CD,∴CD∥AB,∴∠EDM=∠DAB=60°,∴EM=DEsin60°=,∴GH=6,

∵CD∥AB,∴∠DHE=∠OFE,

∵△OEF′是△OEF关于直线OE的对称图形,∴△OEF′≌△OEF,∴∠OFE=∠OF′E,

∵点E是AD的中点,∴OE=AD=AE,

∵∠EAO=60°,∴△EAO是等边三角形,∴∠EOA=60°,∠AEO=60°,

∵△OEF′≌△OEF,∴∠EOF′=∠EOA=60°,∴∠EOF′=∠AEO,∴AD∥OF′,

∴∠OF′E=∠DEH,∴∠DEG=∠DHE,

∵∠DEG=∠EDH,∴△DGE∽△DEH,∴,∴DE2=DG×DH,

设DH=x,则DG=x+6,∴4=x(x+6),∴x1=﹣3+,x2=﹣3﹣

∴DH=﹣3+.∴DG=3+∴DG=AF=3+,∴OF=5+,∴F(﹣5﹣,0).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网