题目内容
【题目】如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A( , )和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.
(1)求抛物线的解析式;
(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由.
【答案】
(1)
解:∵B(4,m)在直线y=x+2上,
∴m=6,即B(4,6),
∵A( , )和B(4,6)在抛物线y=ax2+bx+6上,
∴ ,
解得: ,
∴抛物线的解析式y=2x2﹣8x+6
(2)
解:存在.
设动点P的坐标为(n,n+2),点C的坐标为(n,2n2﹣8n+6),
∴PC=(n+2)﹣(2n2﹣8n+6)=﹣2n2+9n﹣4=﹣2(n﹣ )2+ ,
∵﹣2<0,
∴开口向下,有最大值,
∴当n= 时,线段PC有最大值
【解析】(1)将点B坐标代入直线解析式,求出m的值,然后把A、B坐标代入二次函数解析式,求出a、b,即可求得解析式;(2)设动点P的坐标为(n,n+2),点C的坐标为(n,2n2﹣8n+6),表示出PC的长度,然后利用配方法求出二次函数的最大值,并求出此时n的值.
【考点精析】本题主要考查了二次函数的图象和二次函数的性质的相关知识点,需要掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能正确解答此题.
练习册系列答案
相关题目