题目内容

【题目】如图,在平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(3,0),B(0,6)分别在x轴、y轴上,反比例函数y= (x>0)的图像经过点D,且与边BC交于点E,则点E的坐标为.

【答案】(2,7)
【解析】解:过点D作DF⊥x轴于点F,则∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,
∵四边形ABCD是矩形,
∴∠BAD=90°,AD=BC,
∴∠OAB+∠DAF=90°,
∴∠ABO=∠DAF,
∴△AOB∽△DFA,
∴OA:DF=OB:AF=AB:AD,
∵AB:BC=3:2,点A(3,0),B(0,6),
∴AB:AD=3:2,OA=3,OB=6,
∴DF=2,AF=4,
∴OF=OA+AF=7,
∴点D的坐标为:(7,2),
∴反比例函数的解析式为:y= ①,点C的坐标为:(4,8),
设直线BC的解析式为:y=kx+b,

解得:
∴直线BC的解析式为:y= x+6②,
联立①②得: (舍去),
∴点E的坐标为:(2,7).
所以答案是:(2,7).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网