题目内容

【题目】如图,OC是∠AOB的平分线,点POC上且OP=4,∠AOB=60°,过点P的动直线DEOAD,交OBE,那么=_____

【答案】

【解析】

过点PPM⊥ODM,PN⊥OEN,作EH⊥ODH,再用OE表示出EH,求出S△DOE,根据角平分线的性质分别求出PM,PN,求出S△DOE,列式计算即可.

解:过点PPM⊥ODM,PN⊥OEN,作EH⊥ODH,

Rt△EOH中,∠AOB=60°,

EH= OE,

∴S△DOE=×OD×EH=×OD×OE,
∵OC是∠AOB的平分线,OP=4,
∴∠MOP=∠NOP=30°,PM=PN=OP=2,
∴S△DOE=S△DOP+S△POE=×ODPM+×OEPN=OD+OE,
×OD×OE=OD+OE,

.

故答案为:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网