题目内容
【题目】如图,直线交轴于点,交轴于点,点是轴上一动点,以点为圆心,以1个单位长度为半径作,当与直线相切时,点的坐标是_____.
【答案】(﹣,0)或P(﹣,0)
【解析】
根据函数解析式求得,,得到,,根据勾股定理得到,设与直线相切于,连接,则,,根据相似三角形的性质即可得到结论.
∵直线y=﹣x﹣3交x轴于点A,交y轴于点B,
∴令x=0,得y=﹣3,令y=0,得x=﹣4,
∴A(﹣4,0),B(0.﹣3),
∴OA=4,OB=3,
∴AB=5,
设⊙P与直线AB相切于D,
如图所示:连接PD,
则PD⊥AB,PD=1,
∵∠ADP=∠AOB=90°,∠PAD=∠BAO,
∴△APD∽△ABO,
∴=,
∴=,
∴AP=,
∴OP=或OP=,
∴P(﹣,0)或P(﹣,0).
故答案是:(﹣,0)或P(﹣,0).
练习册系列答案
相关题目