题目内容
【题目】如图,边长为4的正方形ABCD外切于⊙O,切点分别为E、F、G、H.则图中阴影部分的面积为______.
【答案】2π+4.
【解析】解:如图,连接HO,延长HO交CD于点P,∵正方形ABCD外切于⊙O,∴∠A=∠D=∠AHP=90°,∴四边形AHPD为矩形,∴∠OPD=90°,又∠OFD=90°,∴点P于点F重合,则HF为⊙O的直径,同理EG为⊙O的直径,由∠B=∠OGB=∠OHB=90°且OH=OG知,四边形BGOH为正方形,同理四边形OGCF、四边形OFDE、四边形OEAH均为正方形,∴BH=BG=GC=CF=2,∠HGO=∠FGO=45°,∴∠HGF=90°,GH=GF= =,则阴影部分面积=S⊙O+S△HGF=π22+××=2π+4.故答案为:2π+4.
练习册系列答案
相关题目
【题目】(1)先完成下列表格:
a | …… | 0.0001 | 0.01 | 1 | 100 | 10000 | …… |
…… | 0.01 | ______ | 1 | ______ | ______ | …… |
(2)由上表你发现什么规律?
(3)根据你发现的规律填空:
①已知=1.732则=______=______
②已知=0.056,则=______