题目内容
【题目】有一家糖果加工厂,它们要对一款奶糖进行包装,要求每袋净含量为100g.现使用甲、乙两种包装机同时包装100g的糖果,从中各抽出10袋,测得实际质量(g)如下:
甲:101,102,99,100,98,103,100,98,100,99
乙:100,101,100,98,101,97,100,98,103,102
(1)分别计算两组数据的平均数、众数、中位数;
(2)要想包装机包装奶糖质量比较稳定,你认为选择哪种包装机比较适合?简述理由.
【答案】(1)甲:平均数为100、众数为100、中位数为100;乙:平均数为100、中位数是100、乙的众数是100;(2)选择甲种包装机比较合适.
【解析】
(1)根据平均数是指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数进行计算即可.
(2)利用方差公式分别计算出甲、乙的方差,然后可得答案.
解:(1)甲的平均数为:(101+102+99+100+98+103+100+98+100+99)=100;
乙的平均数为:(100+101+100+98+101+97+100+98+103+102)=100;
甲中数据从小到大排列为:98,98,99,99,100,100,100,101,102,103
故甲的中位数是:100,甲的众数是100,
乙中数据从小到大排列为:97,98,98,100,100,100,101,101,102,103
故乙的中位数是:100,乙的众数是100;
(2)甲的方差为:=
[(101﹣100)2+(102﹣100)2+(99﹣100)2+(100﹣100)2+(98﹣100)2+(103﹣100)2+(100﹣100)2+(98﹣100)2+(100﹣100)2+(98﹣100)2)
=2.4;
乙的方差为:=
[(100﹣100)2+(101﹣100)2+(100﹣100)2+(98﹣100)2+(101﹣100)2+(97﹣100)2+(100﹣100)2+(98﹣100)2+(103﹣100)2+(102﹣100)2]
=3.2,
∵<
,
∴选择甲种包装机比较合适.
![](http://thumb.zyjl.cn/images/loading.gif)