题目内容
【题目】已知抛物线y=ax2+bx+c.
(Ⅰ)若抛物线的顶点为A(﹣2,﹣4),抛物线经过点B(﹣4,0)
①求该抛物线的解析式;
②连接AB,把AB所在直线沿y轴向上平移,使它经过原点O,得到直线l,点P是直线l上一动点.
设以点A,B,O,P为顶点的四边形的面积为S,点P的横坐标为x,当4+6≤S≤6+8时,求x的取值范围;
(Ⅱ)若a>0,c>1,当x=c时,y=0,当0<x<c时,y>0,试比较ac与l的大小,并说明理由.
【答案】(Ⅰ)①y=x2+4x②当4+6≤S≤6+8时,x的取值范围为是≤x≤或≤x≤(Ⅱ)ac≤1
【解析】
(I)①由抛物线的顶点为A(-2,-4),可设抛物线的解析式为y=a(x+2)2-4,代入点B的坐标即可求出a值,此问得解,②根据点A、B的坐标利用待定系数法可求出直线AB的解析式,进而可求出直线l的解析式,分点P在第二象限及点P在第四象限两种情况考虑:当点P在第二象限时,x<0,通过分割图形求面积法结合4+6≤S≤6+8,即可求出x的取值范围,当点P在第四象限时,x>0,通过分割图形求面积法结合4+6≤S≤6+8,即可求出x的取值范围,综上即可得出结论,(2)由当x=c时y=0,可得出b=-ac-1,由当0<x<c时y>0,可得出抛物线的对称轴x=≥c,进而可得出b≤-2ac,结合b=-ac-1即可得出ac≤1.
(I)①设抛物线的解析式为y=a(x+2)2﹣4,
∵抛物线经过点B(﹣4,0),
∴0=a(﹣4+2)2﹣4,
解得:a=1,
∴该抛物线的解析式为y=(x+2)2﹣4=x2+4x.
②设直线AB的解析式为y=kx+m(k≠0),
将A(﹣2,﹣4)、B(﹣4,0)代入y=kx+m,
得:,解得:,
∴直线AB的解析式为y=﹣2x﹣8.
∵直线l与AB平行,且过原点,
∴直线l的解析式为y=﹣2x.
当点P在第二象限时,x<0,如图所示.
S△POB=×4×(﹣2x)=﹣4x,S△AOB=×4×4=8,
∴S=S△POB+S△AOB=﹣4x+8(x<0).
∵4+6≤S≤6+8,
∴,即,
解得:≤x≤,
∴x的取值范围是≤x≤.
当点P′在第四象限时,x>0,
过点A作AE⊥x轴,垂足为点E,过点P′作P′F⊥x轴,垂足为点F,则
S四边形AEOP′=S梯形AEFP′﹣S△OFP′=(x+2)﹣x(2x)=4x+4.
∵S△ABE=×2×4=4,
∴S=S四边形AEOP′+S△ABE=4x+8(x>0).
∵4+6≤S≤6+8,
∴,即,
解得:≤x≤,
∴x的取值范围为≤x≤.
综上所述:当4+6≤S≤6+8时,x的取值范围为是≤x≤或≤x≤.
(II)ac≤1,理由如下:
∵当x=c时,y=0,
∴ac2+bc+c=0,
∵c>1,
∴ac+b+1=0,b=﹣ac﹣1.
由x=c时,y=0,可知抛物线与x轴的一个交点为(c,0).
把x=0代入y=ax2+bx+c,得y=c,
∴抛物线与y轴的交点为(0,c).
∵a>0,
∴抛物线开口向上.
∵当0<x<c时,y>0,
∴抛物线的对称轴x=﹣≥c,
∴b≤﹣2ac.
∵b=﹣ac﹣1,
∴﹣ac﹣1≤﹣2ac,
∴ac≤1.