题目内容
【题目】在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F
(1)求证:AC是⊙O的切线;
(2)若CF=2,CE=4,求⊙O的半径.
【答案】(1)见解析;(2)⊙O的半径为5.
【解析】
(1)根据角平分线的定义和同圆的半径相等可得:OE∥BC,所以∠OEA=90°,则AC是⊙O的切线;
(2)过点O作OH⊥BF交BF于H,先求OH和BH的长,再根据勾股定理求OB的长.
(1)证明:连接OE.
∵OE=OB,
∴∠OBE=∠OEB,
∵BE平分∠ABC,
∴∠OBE=∠EBC,
∴∠EBC=∠OEB,
∴OE∥BC,
∴∠OEA=∠C,
∵∠ACB=90°,
∴∠OEA=90°,
∴AC是⊙O的切线;
(2)解:设⊙O的半径为r.
过点O作OH⊥BF交BF于H,
由题意可知四边形OECH为矩形,
∴OH=CE=4,CH=OE=r,
∴BH=FH=CH-CF=r-2,
在Rt△BHO中,∵OH2+BH2=OB2,
∴42+(r-2)2=r2,
解得r=5.
∴⊙O的半径为5.
练习册系列答案
相关题目