题目内容
【题目】如图,在矩形ABCD中,E是BC上的一点,且AE=AD,又DF⊥AE于点F
(1)求证:CE=EF;
(2)若EF=2,CD=4,求矩形ABCD的面积.
【答案】(1)证明见解析(2)20
【解析】
(1)连接DE,利用矩形的性质,则可证得Rt△ABE≌Rt△DFA,进一步可证得Rt△DFE≌Rt△DCE,则可证得结论;
(2)设BE=x,则AF=x,AE=x+2,在Rt△ABE中,利用勾股定理,可求得AE,则可求得BC的长,可求得矩形ABCD的面积.
(1)如图,连接DE,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠DAF=∠AEB,
∵DF⊥AE,
∴∠AFD=∠B=90°.
又∵AD=AE,
∴Rt△ABE≌Rt△DFA.
∴AB=CD=DF.
又∵∠DFE=∠C=90°,DE=DE,
∴Rt△DFE≌Rt△DCE.
∴EC=EF;
(2)∵EF=EC=2,CD=AB=4,
∴设BE=x,则AF=x,AE=x+2.
在Rt△ABE中,∵BE2+AB2=AE2,
∴42+x2=(x+2)2.
解这个方程得:x=3,
∴BC=5.
∴矩形ABCD的面积=5×4=20.
练习册系列答案
相关题目