题目内容
【题目】如图1,已知四边形ABCD内接于⊙O,AC为⊙O的直径,AD=DB,AC与BD交于点E,且AE=BC.
(1)求证:AB=CB;
(2)如图2,△ABC绕点C逆时针旋转35°得到△FGC,点A经过的路径为弧AF,若AC=4,求图中阴影部分的面积.
【答案】(1)证明见解析;(2)S阴=.
【解析】
(1)利用SAS证明△ADE≌△BDC,可得∠ADE=∠BDC,继而可得,由此即可得证;
(2)根据S阴=S扇形CAF+S△CFG﹣S△ABC=S扇形CAF,利用扇形公式进行计算即可.
(1)∵AD=BD,∠DAE=∠DBC,AE=BC,
∴△ADE≌△BDC(SAS),
∴∠ADE=∠BDC,
∴,
∴AB=BC.
(2) S阴=S扇形CAF+S△CFG﹣S△ABC=S扇形CAF==.
练习册系列答案
相关题目
【题目】随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:
地铁站 | A | B | C | D | E |
x(千米) | 8 | 9 | 10 | 11.5 | 13 |
y1(分钟) | 18 | 20 | 22 | 25 | 28 |
(1)求y1关于x的函数表达式;
(2)李华骑单车的时间y2(单位:分钟)也受x的影响,其关系可以用y2=x2-11x+78来描述,请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.