题目内容
【题目】如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣4,4),B(﹣2,5),C(﹣2,1).
(1)平移△ABC,使点C移到点C1(﹣2,﹣4),画出平移后的△A1B1C1,并写出点A1,B1的坐标;
(2)将△ABC绕点(0,3)旋转180°,得到△A2B2C2,画出旋转后的△A2B2C2;
(3)求(2)中的点C旋转到点C2时,点C经过的路径长(结果保留π).
【答案】(1)画图见解析, A1(﹣4,﹣1),B1(﹣2,0);(2)画图见解析;(3)点C经过的路径长为2π.
【解析】(1)根据点C移到点C1(-2,-4),可知向下平移了5个单位,分别作出A、B、C的对应点A1、B1、C1即可解决问题;
(2)根据中心对称的性质,作出A、B、C的对应点A2、B2、C2即可;
(3)利用勾股定理计算CC2,可得半径为2,根据圆的周长公式计算即可.
(1)如图所示,则△A1B1C1为所求作的三角形,
∴A1(-4,-1),B1(-2,0);
(2)如图所示,则△A2B2C2为所求作的三角形,
(3)点C经过的路径长:是以(0,3)为圆心,以CC2为直径的半圆,
由勾股定理得:CC2=,
∴点C经过的路径长:.
练习册系列答案
相关题目