题目内容
【题目】正方形的边长为,点分别是线段上的动点,连接并延长,交边于,过作,垂足为,交边于点.
(1)如图1,若点与点重合,求证:;
(2)如图2,若点从点出发,以的速度沿向点运动,同时点从点出发,以的速度沿向点运动,运动时间为.
①设,求关于t的函数表达式;
②当时,连接,求的长.
【答案】(1)详见解析;(2)①;②5.
【解析】
试题分析:(1)根据已知条件易证△ABF≌△NAD,由全等三角形的性质即可得;(2)
先证△ABF∽△NAD,根据全等三角形的性质求得;(3)利用△ABF∽△NAD,求得t=2,根据(2)的函数解析式求得BF的长,再由勾股定理即可得FN的长.
试题解析:
【解】
(1)∵正方形
∴AD=AB,∠DAN=∠FBA=90°
∵
∴∠NAH+∠ANH=90°
∵∠NDA+∠ANH=90°
∴∠NAH=∠NDA
∴△ABF≌△NAD
∴
(2)①∵正方形
∴AD∥BF
∴∠ADE=∠FBE
∵∠AED=∠BEF
∴△EBF∽△EAD
∴
∵正方形
∴AD=DC=CB=6
∴BD=
∵点从点出发,以的速度沿向点运动,运动时间为.
∴BE=,DE=
∴
∴
②当时,连接,求的长.
∵正方形
∴∠MAN=∠FBA=90°
∵
∴∠NAH+∠ANH=90°
∵∠NMA+∠ANH=90°
∴∠NAH=∠NMA
∴△ABF∽△NAD
∴
∵,AB=6
∴AN=2,BN=4
∴
∴t=2
把t=2代入,得y=3,即BF=3,
在RT△BFN中,BF=3,BN=4,
根据勾股定理即可得FN=5.
练习册系列答案
相关题目