题目内容
【题目】如图,点E在线段CD上,AE,BE分别平分∠DAB和∠CBA,∠AEB=90°,设AD=x,BC=y,且(x-3)2+|y-4|=0.
(1)求AD和BC的长;
(2)你认为AD和BC有怎样的位置关系?并说明理由.
【答案】(1) AD=3,BC=4;(2)AD∥BC.理由见解析.
【解析】
(1)根据题意可知x-3=0,y-4=0,易求解AD和BC的长;(2)根据∠AEB=90°,可得∠EAB+∠EBA=90°,因为EA、EB分别平分∠DAB和∠CBA,则∠DAB+∠ABC=180°,所以AD∥BC.
(1)∵(x-3)2+|y-4|=0,
∴x-3=0,y-4=0,解得x=3,y=4.
∴AD=3,BC=4.
(2)AD∥BC.
理由:∵AE,BE分别平分∠DAB和∠CBA,
∴∠DAE=∠EAB,∠CBE=∠EBA.
∵∠AEB=90°,
∴∠EAB+∠EBA=90°,
∴∠DAE+∠CBE=90°,
∴∠EAB+∠EBA+∠DAE+∠CBE=180°,
即∠DAB+∠CBA=180°,∴AD∥BC.
练习册系列答案
相关题目