题目内容
【题目】如图,在Rt△ABC中,∠BAC=90°,点D为BC边的中点,以AD为直径作⊙O,分别与AB,AC交于点E,F,过点E作EG⊥BC于G.
(1)求证:EG是⊙O的切线;
(2)若AF=6,⊙O的半径为5,求BE的长.
【答案】(1)见解析;(2)8
【解析】
(1)先判断出EF是⊙O的直径,进而判断出OE∥BC,即可得出结论;
(2)先根据勾股定理求出AE,再判断出BE=AE,即可得出结论.
(1)证明:如图,连接EF,
∵∠BAC=90°,
∴EF是⊙O的直径,
∴OA=OE,
∴∠BAD=∠AEO,
∵点D是Rt△ABC的斜边BC的中点,
∴AD=BD,
∴∠B=∠BAD,
∴∠AEO=∠B,
∴OE∥BC,
∵EG⊥BC,
∴OE⊥EG,
∵点E在⊙O上,
∴EG是⊙O的切线;
(2)∵⊙O的半径为5,
∴EF=2OE=10,
在Rt△AEF中,AF=6,
根据勾股定理得, ,
由(1)知OE∥BC,
∵OA=OD,
∴BE=AE=8.
练习册系列答案
相关题目