题目内容

如图,以△ABC的各边向同侧作正△ABD,BCF,ACE.
(1)求证:四边形AEFD是平行四边形;
(2)当△ABC是______三角形时,四边形AEFD是菱形;
(3)当∠BAC=______时,四边形AEFD是矩形;
(4)当∠BAC=______时,以A、E、F、D为顶点的四边形不存在.
(1)证明:∵△BCF和△ACE是等边三角形,
∴AC=CE,BC=CF,∠ECA=∠BCF=60°,
∴∠ECA-∠FCA=∠BCF-∠FCA,
即∠ACB=∠ECF,
∵在△ACB和△ECF中
AC=CE
∠ACB=∠ECF
BC=CF

∴△ACB≌△ECF(SAS),
∴EF=AB,
∵三角形ABD是等边三角形,
∴AB=AD,
∴EF=AD=AB,
同理FD=AE=AC,
即EF=AD,DF=AE,
∴四边形AEFD是平行四边形.

(2)当△ABC是等腰三角形时,平行四边形AEFD是菱形,理由如下:
∵由(1)知:四边形AEFD是平行四边形,EF=AD=AB,FD=AE=AC
∴AB=AC,
∴EF=FD,
∴平行四边形AEFD是菱形,
故答案为:等腰.

(3)当∠BAC=150°时,平行四边形AEFD是矩形,理由如下:
∵△ADB和△ACE是等边三角形,
∴∠DAB=∠EAC=60°,
∵∠BAC=150°,
∴∠DAE=360°-60°-60°-150°=90°,
∵由(1)知:四边形AEFD是平行四边形,
∴平行四边形AEFD是矩形,
故答案为:150°.

(4)当∠BAC=60°时,以A、E、F、D为顶点的四边形不存在,理由如下:
∵∠DAB=∠EAC=60°(已证),∠BAC=60°,
∴∠DAE=60°+60°+60°=180°,
∴D、A、E三点共线,
即边DA、AE在一条直线上,
∴当∠BAC=60°时,以A、E、F、D为顶点的四边形不存在,
故答案为:60°.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网