题目内容
【题目】如图,矩形ABCD中,AB=3,BC=4,将该矩形沿对角线BD折叠,则图中阴影部分的面积是多少?
【答案】
【解析】
由矩形与折叠的性质,易证得△BDE是等腰三角形,然后设ED=EB=x,在Rt△ABE中,由AB2+AE2=BE2,可得方程:32+(4x)2=x2,解此方程即可求得DE的长,继而求得阴影部分的面积.
∵四边形ABCD是矩形,
∴∠A=90°,AD∥BC,AD=BC=4,
∴∠EDB=∠DBC,
由折叠的性质可得:∠EBD=∠DBC,
∴∠EBD=∠EDB,
∴EB=ED,
设ED=EB=x,则AE=ADED=4x,
在Rt△ABE中,AB2+AE2=BE2,
即32+(4x)2=x2,
解得:x=,
即DE=,
∴S阴影=S△BDE=DEAB=××3=.
答:图中阴影部分的面积是.
练习册系列答案
相关题目
【题目】盒中有若干枚黑球和白球,这些球除颜色外无其他差别,现让学生进行摸球试验:每次摸出一个球,记下颜色后放回摇匀,重复进行这样的试验得到以下数据:
摸棋的次数n | 100 | 200 | 300 | 500 | 800 | 1000 |
摸到黑棋的次数m | 38 | 79 | 121 | 196 | 322 | 398 |
摸到黑棋的频率(精确到0.001) | 0.380 | 0.395 | 0.403 | 0.392 | 0.403 | 0.398 |
(1)根据表中数据估计,从盒中摸出一个球是白球的概率是_____(精确到0.01);
(2)若盒中黑球与白球共有5枚,某同学连续不放回地摸出两个球,用树状图或表格计算这两个球颜色不同的概率.