题目内容
【题目】盒中有若干枚黑球和白球,这些球除颜色外无其他差别,现让学生进行摸球试验:每次摸出一个球,记下颜色后放回摇匀,重复进行这样的试验得到以下数据:
摸棋的次数n | 100 | 200 | 300 | 500 | 800 | 1000 |
摸到黑棋的次数m | 38 | 79 | 121 | 196 | 322 | 398 |
摸到黑棋的频率(精确到0.001) | 0.380 | 0.395 | 0.403 | 0.392 | 0.403 | 0.398 |
(1)根据表中数据估计,从盒中摸出一个球是白球的概率是_____(精确到0.01);
(2)若盒中黑球与白球共有5枚,某同学连续不放回地摸出两个球,用树状图或表格计算这两个球颜色不同的概率.
【答案】(1)0.60;(2)见解析.
【解析】
(1)大量重复试验下摸球的频率可以估计摸球的概率,据此求解;
(2)画树状图列出所有等可能结果,再找到符合条件的结果数,根据概率公式求解可得.
解:(1)根据表中数据估计从盒中摸出一个球是白球的概率是1﹣0.40=0.60,
故答案为:0.60;
(2)由(1)可知,黑球的个数为5×0.40=2,则白球的个数为3,
画树状图如下:
由表可知,所有等可能结果共有20种情况,
其中这两球颜色不同的有12种结果,
所以这两球颜色不同的概率为.
【题目】小明根据学习函数的经验,对函数y=x+的图象与性质进行了探究.
下面是小明的探究过程,请补充完整:
(1)函数y=x+的自变量x的取值范围是_____.
(2)下表列出了y与x的几组对应值,请写出m,n的值:m=_____,n=_____;
x | … | ﹣3 | ﹣2 | ﹣1 | ﹣ | ﹣ | 1 | 2 | 3 | 4 | … | ||
y | … | ﹣ | ﹣ | ﹣2 | ﹣ | ﹣ | m | 2 | n | … |
(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
(4)结合函数的图象,请完成:
①当y=﹣时,x=_____.
②写出该函数的一条性质_____.
③若方程x+=t有两个不相等的实数根,则t的取值范围是_____.