题目内容
【题目】如图,ABCD中,点O是AC与BD的交点,过点O的直线与BA、DC的延长线分别交于点E、F.
(1)求证:△AOE≌△COF;
(2)请连接EC、AF,则EF与AC满足什么条件时,四边形AECF是矩形,并说明理由.
【答案】
(1)证明:∵四边形ABCD是平行四边形,
∴AO=OC,AB∥CD.
∴∠E=∠F.
∵在△AOE与△COF中, ,
∴△AOE≌△COF(AAS)
(2)连接EC、AF,
则EF与AC满足EF=AC时,四边形AECF是矩形,
理由如下:
由(1)可知△AOE≌△COF,
∴OE=OF,
∵AO=CO,
∴四边形AECF是平行四边形,
∵EF=AC,
∴四边形AECF是矩形.
【解析】(1)根据平行四边形的性质和全等三角形的证明方法证明即可;(2)请连接EC、AF,则EF与AC满足EF=AC时,四边形AECF是矩形,首先证明四边形AECF是平行四边形,再根据对角线相等的平行四边形为矩形即可证明.
【考点精析】利用平行四边形的性质和矩形的判定方法对题目进行判断即可得到答案,需要熟知平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分;有一个角是直角的平行四边形叫做矩形;有三个角是直角的四边形是矩形;两条对角线相等的平行四边形是矩形.
练习册系列答案
相关题目