题目内容
【题目】根据对徐州市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数的图象如图②所示.
(1)分别求出y1、y2与x之间的函数关系式;
(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨,写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式,并求出这两种蔬菜各进多少吨时 获得的销售利润之和最大,最大利润是多少?
【答案】. 解:(1). ………………………………………1分
.…………………………………3分
(2),
.………………………………4分
即.
所以甲种蔬菜进货量为6吨,乙种蔬菜进货量为4吨时,获得的销售利润之和最大,最大利润是9200元. …………………6分
【解析】
试题(1)把(5,3)代入正比例函数即可求得k的值也就求得了的关系式;把原来及(1,2),(5,6)代入即可求得的关系式;
(2)销售利润之和W=甲种蔬菜的利润+乙种蔬菜的利润,利用配方法求得二次函数的最值即可.
试题解析:
(1)由题意得:5k=3,
解得k=0.6,
∴=0.6x;
由,解得:
∴;
(2)W=0.6(10-t)+(-0.2+2.2t)=-0.2t2+1.6t+6=-0.2(t-4)2+9.2
所以甲种蔬菜进货量为6吨,乙种蔬菜进货量为4吨,获得的销售利润之和最大,最大利润是9200元.
练习册系列答案
相关题目