题目内容

【题目】阅读下列材料:

问题:如图所示,在正方形ABCD和BEFG中,点A,B,E在同一直线上,P是线段DF中点,连接PG,PC.

探究:当PG与PC的夹角为90°时,平行四边形BEFG是正方形.

小聪同学的思路是:首先可以证明四边形BEFG是矩形,然后延长GP交DC于点H,构造全等三角形,经过推理可以探索出问题答案.

请你参考小聪同学的思路,探究并解决这个问题.

(1)求证:四边形BEFG是矩形;

(2)求证:PG与PC的夹角为90°时,四边形BEFG是正方形.

【答案】见解析

【解析】证明:(1)在正方形ABCD中,ABC=90°,

∴∠EBG=90°,

四边形BEFG是平行四边形,

平行四边形BEFG是矩形,

(2)如图,

延长GP交DC于点H,

在正方形ABCD和BEFG中,

ABDC,REGF,

DCGF,

∴∠HDP=GFP,DHP=FGP,

点P是线段DF中点,

DP=FP,

∴△DHP≌△FGP,

DH=FG,HP=GP,

∵∠CPG=90°,

CH=CG,

在正方形ABCD中,DC=BC,

DH=BG,

BG=GF,

由(1)知,四边形BEFG是矩形,

四边形BEFG是正方形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网