ÌâÄ¿ÄÚÈÝ
Èçͼ£¬·½¸ñÖ½ÖÐÿ¸öСÕý·½Ðεı߳¤¶¼Êǵ¥Î»1£¬¡÷ABCÔÚƽÃæÖ±½Ç×ø±êϵÖеÄλÖÃÈçͼËùʾ£®£¨1£©½«¡÷ABCÏòÓÒƽÒÆ4¸öµ¥Î»ºó£¬µÃµ½¡÷A1B1C1£¬Ç뻳ö¡÷A1B1C1£¬²¢Ö±½Óд³öµãC1µÄ×ø±ê£®
£¨2£©×÷³ö¡÷A1B1C1¹ØÓÚxÖáµÄ¶Ô³ÆͼÐΡ÷A2B2C2£¬²¢Ö±½Óд³öµãA2µÄ×ø±ê£®
£¨3£©ÇëÓÉͼÐÎÖ±½ÓÅжÏÒÔµãC1¡¢C2¡¢B2¡¢B1Ϊ¶¥µãµÄËıßÐÎÊÇʲôËıßÐΣ¿²¢Çó³öËüµÄÃæ»ý£®
·ÖÎö£º£¨1£©°Ñ¡÷ABCµÄ¸÷¸ö¶¥µãÏòÓÒƽÒÆ4¸öµ¥Î»ºó˳´ÎÁ¬½Ó¼´¿É£»
£¨2£©µÃµ½¡÷A1B1CµÄ¸÷¸ö¶¥µã1¹ØÓÚxÖáµÄ¶Ô³Æµã£¬Ë³´ÎÁ¬½Ó£¬¸ù¾ÝA2ËùÔÚÏóÏÞ¼°¾àÀë×ø±êÖáµÄ¾àÀë¿ÉµÃÏàÓ¦×ø±ê£»
£¨3£©Ò×µÃΪÌÝÐΣ¬¸ù¾ÝÌÝÐÎÃæ»ý¼ÆËã¼´¿É£®
£¨2£©µÃµ½¡÷A1B1CµÄ¸÷¸ö¶¥µã1¹ØÓÚxÖáµÄ¶Ô³Æµã£¬Ë³´ÎÁ¬½Ó£¬¸ù¾ÝA2ËùÔÚÏóÏÞ¼°¾àÀë×ø±êÖáµÄ¾àÀë¿ÉµÃÏàÓ¦×ø±ê£»
£¨3£©Ò×µÃΪÌÝÐΣ¬¸ù¾ÝÌÝÐÎÃæ»ý¼ÆËã¼´¿É£®
½â´ð£º£¨±¾ÌâÂú·Ö6·Ö£©
½â£º£¨1£©ÕýÈ·»³öÏòÓÒƽÒÆ4¸öµ¥Î»µÄͼÐΣ®£¨1·Ö£©
C1£¨1£¬4£©£¨1·Ö£©
£¨2£©ÕýÈ·»³öͼÐΣ®£¨1·Ö£©
A2£¨1£¬-1£©£®£¨1·Ö£©
£¨3£©ËıßÐÎC1C2B2B1ÊǵÈÑüÌÝÐΣ®£¨1·Ö£©
ÓÉͼ¿ÉµÃ£ºB1B2=2£¬C1C2=8£¬A1B1=2£¬
¡àÌÝÐεÄÃæ»ý=
=
=10£¨1·Ö£©£®
½â£º£¨1£©ÕýÈ·»³öÏòÓÒƽÒÆ4¸öµ¥Î»µÄͼÐΣ®£¨1·Ö£©
C1£¨1£¬4£©£¨1·Ö£©
£¨2£©ÕýÈ·»³öͼÐΣ®£¨1·Ö£©
A2£¨1£¬-1£©£®£¨1·Ö£©
£¨3£©ËıßÐÎC1C2B2B1ÊǵÈÑüÌÝÐΣ®£¨1·Ö£©
ÓÉͼ¿ÉµÃ£ºB1B2=2£¬C1C2=8£¬A1B1=2£¬
¡àÌÝÐεÄÃæ»ý=
(B1B2+C1C2)¡ÁA1B1 |
2 |
(8+2)¡Á2 |
2 |
µãÆÀ£º×ۺϿ¼²éƽÒÆ×÷ͼ¼°¶Ô³Æ×÷ͼ£®×¢ÒâͼÐεı任£¬¿´¹Ø¼üµãµÄ±ä»»¼´¿É£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿