题目内容
【题目】如图,将矩形ABCD沿线段AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.
(1)求证:△AGE≌△AGD
(2)探究线段EG、GF、AF之间的数量关系,并说明理由;
(3)若AG=6,EG=2 ,求BE的长.
【答案】
(1)
证明:∵△AEF是由△ADF折叠得到的,
∴AD=AE,∠DAG=∠EAG,
又∵AG=AG
∴△AGE≌△AGD;
(2)
解:AF×GF=2EG2,
证明如下:
连接DE交GF于点O
∵△AEF是由△ADF折叠得到的
∠DAG=∠EAG,DF=EF
∵△AGE≌△AGD
∴GD=GE,∠AGD=∠AGE
∴∠FGD=∠FGE
∵EG∥CD
∴∠DFG=∠FGE
∴∠FGD=∠DFG
∴GD=DF
∴GD=EG=EF=DF
∴四边形DGEF是菱形
AF⊥DE,OF= GF
∴∠ADF=∠DOF=90°
又∵∠DFO=∠DFA
∴△DFO∽△AFD
∴
∴OF×AF=DF2
∵OF= GF,DF=EG
∴ GF×AF=EG2
即:AF×GF=2EG2
(3)
解:过点G作GH⊥CD于H
则四边形CHGE是矩形,
∴CE=GH
设GF=x,则AF=6+x
∵AF×GF=2EG2EG=2
∴x(6+x)=40
解得:x=4
∴GF=4,
∴AF=6+4=10
在Rt△AEF中
AE=
∴BC=AD=AE=4
∵GH∥AD
∴△FGH∽△FAD
∴
∴
∴CE=GH=
∴BE=BC﹣CE=4 ﹣ = .
【解析】(1)先依据翻折的性质可得AD=AE,∠DAG=∠EAG,易得△AGE≌△AGD;(2)连接DE,交AF于点O.由菱形的性质可知GF⊥DE,OG=OF= GF,接下来,证明△DOF∽△ADF,由相似三角形的性质可证明DF2=FOAF,于是可得到GE、AF、FG的数量关系;(3)过点G作GH⊥DC,垂足为H.利用(2)的结论可求得FG=4,然后再△ADF中依据勾股定理可求得AD的长,然后再证明△FGH∽△FAD,利用相似三角形的性质可求得GH的长,最后依据BE=AD﹣GH求解即可.
【题目】某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)与每件销售价x(元)的关系数据如下:
x | 30 | 32 | 34 | 36 |
y | 40 | 36 | 32 | 28 |
(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不写出自变量x的取值范围);
(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?
(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?