题目内容
如图,抛物线y=x2+4x与x轴分别相交于点B、O,它的顶点为A,连接AB,AO.
(1)求点A的坐标;
(2)以点A、B、O、P为顶点构造直角梯形,请求一个满足条件的顶点P的坐标.
(1)求点A的坐标;
(2)以点A、B、O、P为顶点构造直角梯形,请求一个满足条件的顶点P的坐标.
(1)由顶点坐标公式得A点横坐标为x=-
=-2,纵坐标为y=
=-4,∴点A的坐标为(-2,-4);
(2)令y=0,得x=-4或0,
∴B(-4,0),O(0,0);
过点B作直线PB∥AO,交y轴于点C,
作OP⊥PB于点P,PQ⊥OB于点Q;
∵直线AO的解析式为y=2x,
∴设直线PB的解析式为y=2x+b,
将B(-4,0)代入
得,-8+b=0b=8,
∴直线PB的解析式为y=2x+8;
在△BOC中,tan∠OBC=
=2,
tan∠POQ=
,
直线OP的解析式为y=-
x,
联立方程
,
解得P(-
,
).
b |
2a |
4ac-b2 |
4a |
(2)令y=0,得x=-4或0,
∴B(-4,0),O(0,0);
过点B作直线PB∥AO,交y轴于点C,
作OP⊥PB于点P,PQ⊥OB于点Q;
∵直线AO的解析式为y=2x,
∴设直线PB的解析式为y=2x+b,
将B(-4,0)代入
得,-8+b=0b=8,
∴直线PB的解析式为y=2x+8;
在△BOC中,tan∠OBC=
OC |
OB |
tan∠POQ=
1 |
2 |
直线OP的解析式为y=-
1 |
2 |
联立方程
|
解得P(-
16 |
5 |
8 |
5 |
练习册系列答案
相关题目