题目内容

如图,抛物线y=x2+4x与x轴分别相交于点B、O,它的顶点为A,连接AB,AO.
(1)求点A的坐标;
(2)以点A、B、O、P为顶点构造直角梯形,请求一个满足条件的顶点P的坐标.
(1)由顶点坐标公式得A点横坐标为x=-
b
2a
=-2,纵坐标为y=
4ac-b2
4a
=-4,∴点A的坐标为(-2,-4);

(2)令y=0,得x=-4或0,
∴B(-4,0),O(0,0);
过点B作直线PBAO,交y轴于点C,
作OP⊥PB于点P,PQ⊥OB于点Q;

∵直线AO的解析式为y=2x,
∴设直线PB的解析式为y=2x+b,
将B(-4,0)代入
得,-8+b=0b=8,
∴直线PB的解析式为y=2x+8;
在△BOC中,tan∠OBC=
OC
OB
=2

tan∠POQ=
1
2

直线OP的解析式为y=-
1
2
x

联立方程
y=-
1
2
x
y=2x+8

解得P(-
16
5
8
5
)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网