题目内容
如图,△ABC为等腰直角三角形,∠BAC=90°,BC=2,E为AB上任意一动点,以CE为斜边作等腰Rt△CDE,连接AD,下列说法:
①∠BCE=∠ACD;②AC⊥ED;③△AED∽△ECB;④AD∥BC;⑤四边形ABCD的面积有最大值,且最大值为.其中,正确的结论是 。
A.①②④ | B.①③⑤ | C.②③④ | D.①④⑤ |
①④⑤.
解析试题分析:首先根据已知条件看能得到哪些等量条件,然后根据得出的条件来判断各结论是否正确.
∵△ABC、△DCE都是等腰Rt△,
∴AB=AC=BC=,CD=DE=CE;
∠B=∠ACB=∠DEC=∠DCE=45°;
①∵∠ACB=∠DCE=45°,
∴∠ACB-∠ACE=∠DCE-∠ACE;
即∠ECB=∠DCA;故①正确;
②当B、E重合时,A、D重合,此时DE⊥AC;
当B、E不重合时,A、D也不重合,由于∠BAC、∠EDC都是直角,则∠AFE、∠DFC必为锐角;
故②不完全正确;
④∵,
∴;
由①知∠ECB=∠DCA,∴△BEC∽△ADC;
∴∠DAC=∠B=45°;
∴∠DAC=∠BCA=45°,即AD∥BC,故④正确;
③由④知:∠DAC=45°,则∠EAD=135°;
∠BEC=∠EAC+∠ECA=90°+∠ECA;
∵∠ECA<45°,∴∠BEC<135°,即∠BEC<∠EAD;
因此△EAD与△BEC不相似,故③错误;
⑤△ABC的面积为定值,若梯形ABCD的面积最大,则△ACD的面积最大;△ACD中,AD边上的高为定值(即为1),若△ACD的面积最大,则AD的长最大;
由④的△BEC∽△ADC知:当AD最长时,BE也最长;
故梯形ABCD面积最大时,E、A重合,此时EC=AC=,AD=1;
故S梯形ABCD=(1+2)×1=,故⑤正确;
因此本题正确的结论是①④⑤.
考点:1.相似三角形的判定;2.平行线的判定;3.等腰三角形的性质.
已知点C是线段AB上的一个点,且满足,则下列式子成立的是……( )
A.; | B.; | C.; | D. |
如图,在边长为9的正方形ABCD中, F为AB上一点,连接CF.过点F作FE⊥CF,交AD于点E,若AF=3,则AE等于( )
A.1 | B.1.5 | C.2 | D.2.5 |
在比例尺是1:38000的黄浦江交通游览图上,某隧道长约7,它的实际长度约为( )
A.0.266; | B.2.66; | C.26.6; | D.266. |