题目内容
【题目】如图,信号塔PQ座落在坡度i=1:2的山坡上,其正前方直立着一警示牌.当太阳光线与水平线成60°角时,测得信号塔PQ落在斜坡上的影子QN长为2 米,落在警示牌上的影子MN长为3米,求信号塔PQ的高.(结果不取近似值)
【答案】解:如图作MF⊥PQ于F,QE⊥MN于E,则四边形EMFQ是矩形.
在Rt△QEN中,设EN=x,则EQ=2x,
∵QN2=EN2+QE2 ,
∴20=5x2 ,
∵x>0,
∴x=2,
∴EN=2,EQ=MF=4,
∵MN=3,
∴FQ=EM=1,
在Rt△PFM中,PF=FMtan60°=4 ,
∴PQ=PF+FQ=4 +1
【解析】如图作MF⊥PQ于F,QE⊥MN于E,则四边形EMFQ是矩形.分别在Rt△EQN、Rt△PFM中解直角三角形即可解决问题.
【考点精析】解答此题的关键在于理解勾股定理的概念的相关知识,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2,以及对关于坡度坡角问题的理解,了解坡面的铅直高度h和水平宽度l的比叫做坡度(坡比).用字母i表示,即i=h/l.把坡面与水平面的夹角记作A(叫做坡角),那么i=h/l=tanA.
练习册系列答案
相关题目