题目内容

【题目】在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.
(1)设矩形的相邻两边长分别为x,y.
①求y关于x的函数表达式;
②当y≥3时,求x的取值范围;
(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?

【答案】
(1)

解:①由题意可得:xy=3,

则y=

②当y≥3时, ≥3

解得:x≤1


(2)

解:∵一个矩形的周长为6,

∴x+y=3,

∴x+ =3,

整理得:x2﹣3x+3=0,

∵b2﹣4ac=9﹣12=﹣3<0,

∴矩形的周长不可能是6;

∵一个矩形的周长为10,

∴x+y=5,

∴x+ =5,

整理得:x2﹣5x+3=0,

∵b2﹣4ac=25﹣12=13>0,

∴矩形的周长可能是10


【解析】(1)①直接利用矩形面积相等进而得出y与x之间的关系;②直接利用y≥3得出x的取值范围;
(2)直接利用x+y的值结合根的判别式得出答案.
【考点精析】通过灵活运用求根公式,掌握根的判别式△=b2-4ac,这里可以分为3种情况:1、当△>0时,一元二次方程有2个不相等的实数根2、当△=0时,一元二次方程有2个相同的实数根3、当△<0时,一元二次方程没有实数根即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网