题目内容
【题目】如图,在平面直角坐标系中,直线为正比例函数的图象,点的坐标为,过点作轴的垂线交直线于点,以为边作正方形;过点作直线的垂线,垂足为,交轴于点,以为边作正方形;过点作轴的垂线,垂足为,交直线于点,以为边作正方形,…,按此规律操作下所得到的正方形的面积是
A.B.C.D.
【答案】D
【解析】
根据正比例函数的性质得到∠D1OA1=45°,分别求出正方形A1B1C1D1的面积、正方形A2B2C2D2的面积,总结规律解答.
解:∵直线l为正比例函数y=x的图象,
∴∠D1OA1=45°,
∴D1A1=OA1=1,
∴正方形A1B1C1D1的面积=1=()1-1,
由勾股定理得,OD1=,D1A2=,
∴A2B2=A2O=,
∴正方形A2B2C2D2的面积==()2-1,
同理,A3D3=OA3=,
∴正方形A3B3C3D3的面积==()3-1,
…
由规律可知,正方形AnBnCnDn的面积=()n-1,
故选D.
练习册系列答案
相关题目