题目内容
【题目】如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF.
(1)求证:AD平分∠BAC;
(2)猜想写出AB+AC与AE之间的数量关系并给予证明.
【答案】(1)证明见解析;(2)AB+AC=2AE.证明见解析.
【解析】试题分析:(1)、根据垂直得出△BDE与△CDE均为直角三角形,然后根据BD=CD,BE=CF得出三角形全等,从而得出DE=DF,根据角平分线的逆定理得出答案;(2)、根据角平分线得出∠EAD=∠CAD,结合∠E=∠AFD=90°得出∠ADE=∠ADF,从而说明△AED≌△AFD,根据全等得出AE=AF,最后根据AB+AC=AE﹣BE+AF+CF得出答案.
试题解析:(1)、∵DE⊥AB于E,DF⊥AC于F, ∴∠E=∠DFC=90°,∴△BDE与△CDE均为直角三角形,
∵,∴△BDE≌△CDF, ∴DE=DF,即AD平分∠BAC;
、AB+AC=2AE.
练习册系列答案
相关题目
【题目】甲、乙两名射击运动员在某次训练中各射击10发子弹,成绩如表:
甲 | 8 | 9 | 7 | 9 | 8 | 6 | 7 | 8 | 10 | 8 |
乙 | 6 | 7 | 9 | 7 | 9 | 10 | 8 | 7 | 7 | 10 |
且 =8,S乙2=1.8,根据上述信息完成下列问题:
(1)将甲运动员的折线统计图补充完整;
(2)乙运动员射击训练成绩的众数是 , 中位数是 .
(3)求甲运动员射击成绩的平均数和方差,并判断甲、乙两人本次射击成绩的稳定性.