题目内容
【题目】已知:如图,∠EOF=60°,在射线OE上取一点A,使OA=10cm,在射线OF上取一点B,使OB=16cm.以OA、OB为邻边作平行四边形OACB.若点P在射线OF上,点Q在线段CA上,且CQ:OP=1:2.设CQ=a(a>0).
(1)连接PQ,当a=2时,求线段PQ的长度.
(2)若以点P、B、C、Q四点为顶点的四边形是平行四边形时,求a的值.
(3)连接PQ,以PQ所在的直线为对称轴,作点C关于直线PQ的对称点C',当点C′恰好落在平行四边形OACB的边上或者边所在的直线上时,直接写出a的值.
【答案】(1);(2)或16;(3)7或14-2或12.
【解析】
(1)如图1,作辅助线,构建直角三角形,计算PM和MQ的长,利用勾股定理可得PQ的长;
(2)分两种情况:
①当P在边OB上时,如图2,四边形PBCQ是平行四边形,
②当P在OB的延长线上时,如图3,四边形BPCQ是平行四边形,
分别根据PB=CQ列方程可得结论;
(3)存在三种情况:①如图4,当C'在边AC上时,PQ⊥AC,过B作BD⊥AC于D时,则BD∥PQ,
②如图5,当C'在边OB上时,连接PC、CC'、C'Q,过C作CR⊥OP于R,
③如图6,当C'在直线CB上时,连接PC、CC'、C'Q,
分别根据对称性和直角三角形的性质列方程可得结论.
解:(1)如图1,过A作AN⊥OB于N,过B作BD⊥AC于D,过Q作QM⊥OF于M,则AN∥BD∥MQ,
Rt△AON中,∠AOB=∠EOF=60°,OA=10,
∴ON=OA=5,AN=5,
同理得:CD=5,BD=5,
∵四边形OACB是平行四边形,
∴OB∥AC,
∴MQ=BD=5,
当a=2时,CQ=2,OP=4,
∴BM=DQ=5-2=3,
∴PM=PB+BM=16-4+3=15,
Rt△PMQ中,由勾股定理得:PQ===10(cm);
(2)分两种情况:
①当P在边OB上时,如图2,四边形PBCQ是平行四边形,
∴PB=CQ,
即16-2a=a,
a=;
②当P在OB的延长线上时,如图3,四边形BPCQ是平行四边形,
∴PB=CQ
即2a-16=a,
a=16,此时Q与A重合,
综上,a的值为或16;
(3)分三种情况:
①如图4,当C'在边AC上时,PQ⊥AC,过B作BD⊥AC于D时,则BD∥PQ,
∴PB=QD,
16-2a=a-5,
3a=21,
a=7;
②如图5,当C'在边OB上时,连接PC、CC'、C'Q,过C作CR⊥OP于R,
∵C与C'关于PQ对称,
∴PQ是CC'的垂直平分线,
∴PC=PC',CQ=C'Q,
∴∠PCC'=∠PC'C,
∵AC∥OP,
∴∠PC'C=∠QCC',
∴∠QCC'=∠PCC',
∵CC'⊥PQ,
∴PC=CQ=a,
∵OP=2a,
∴BP=2a-16,
Rt△BCR中,∠CBR=60°,
∴∠BCR=30°,
∵BC=10,
∴BR=5,CR=5,
∴PR=5-(2a-16)=21-2a,
由勾股定理得:,
a=14+2(舍)或14-2;
③如图6,当C'在直线CB上时,连接PC、PC'、C'Q,
Rt△PBR中,∠PBR=60°,
∴∠BPR=30°,
∵PB=2a-16,
∴BR=BP=a-8,
同理得:CR=CQ=a,
∵BC=BR+CR,
∴a-8+a=10,a=12,
综上,a的值为7或14-2或12.