题目内容

【题目】如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AECD交于点M,AEBC交于点N.

(1)求证:AE=CD;

(2)求证:AE⊥CD;

(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有   (请写序号,少选、错选均不得分).

【答案】(1)证明见解析;(2)证明见解析;(3)②.

【解析】

(1)欲证明AE=CD,只要证明ABE≌△CBD;

(2)由ABE≌△CBD,推出BAE=BCD,由∠NMC=180°-BCD-CNM,ABC=180°-BAE-ANB,又∠CNM=ABC,ABC=90°,可得∠NMC=90°

(3)结论:②;作BKAEK,BJCDJ.理由角平分线的判定定理证明即可.

(1)证明:∵∠ABC=DBE,

∴∠ABC+CBE=DBE+CBE,

即∠ABE=CBD,

ABECBD中,

∴△ABE≌△CBD,

AE=CD.

(2)∵△ABE≌△CBD,

∴∠BAE=BCD,

∵∠NMC=180°-BCD-CNM,ABC=180°-BAE-ANB,

又∠CNM=ABC,

∵∠ABC=90°

∴∠NMC=90°

AECD.

(3)结论:②

理由:作BKAEK,BJCDJ.

∵△ABE≌△CBD,

AE=CD,SABE=SCDB

AEBK=CDBJ,

BK=BJ,∵作BKAEK,BJCDJ,

BM平分∠AMD.

不妨设①成立,则ABM≌△DBM,则AB=BD,显然可不能,故①错误.

故答案为②

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网