题目内容
【题目】已知结论:在直角三角形中,30°所对的直角边是斜边的一半,请利用这个结论进行下列探究活动.如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=,D为AB中点,P为AC上一点,连接PD,把△APD沿PD翻折得到△EPD,连接CE.
(1)AB=_____,AC=______.
(2)若P为AC上一动点,且P点从A点出发,沿AC以每秒一单位长度的速度向C运动,设P点运动时间为t秒.
①当t=_____秒时,以A、P、E、D、为顶点可以构成平行四边形.
②在P点运动过程中,是否存在以B、C、E、D为顶点的四边形是平行四边形?若存在,请求出t的值;若不存在,请说明理由.
【答案】(1)4,6;(2)①;②存在,t=2或t=6.
【解析】
(1)根据含30°角的直角三角形性质可得AB的长,利用勾股定理即可求出AC的长;(2)①根据平行四边形的性质可得AD//PE,AD=PE,根据折叠性质可得PE=AP,即可得AP=AD,由D为AB中点可得AD的长,即可得AP的长,进而可求出t的值;②分两种情况讨论:当BD为边时,设DE与PC相交于O,根据三角形内角和可得∠B=60°,根据平行四边形的性质可得CE=BD,CE//BD,BC//DE,可得∠ECP=∠A=30°,∠CED=∠ADE=∠B=60°,根据折叠性质可得∠ADP=∠EDP=30°,AP=PE,即可证明∠ADP=∠A,可得AP=PD=PE,可得∠PED=∠PDE=30°,即可得∠PEC=90°,根据含30°角的直角三角形的性质可得PC=2PE,利用勾股定理列方程可求出PE的长,即可得AP的长;当BD为对角线时,可证明平行四边形BCDE是菱形,根据菱形的性质可得∠DCE=30°,可证明DE=AD,∠ADC=∠CDE=120°,利用SAS可证明△ACD≌△ECD,可得AC=CE,根据翻折的性质可证明点P与点C重合,根据AC的长即可求出t值,综上即可得答案.
(1)∵∠C=90°,∠A=30°,BC=,
∴AB=2BC=4,
∴AC==6.
故答案为:4,6
(2)①如图,∵D为AB中点,
∴AD=BD=AB,
∵BC=AB,
∴AD=BD=BC=,
∵ADEP是平行四边形,
∴AD//PE,AD=PE,
∵△APD沿PD翻折得到△EPD,
∴AP=PE,
∴AP=AD=,
∵P点从A点出发,沿AC以每秒一单位长度的速度向C运动,
∴t=.
故答案为:
②存在,理由如下:
i如图,当BD为边时,设DE与PC相交于O,
∵∠A=30°,∠ACB=90°,
∴∠B=60°,
∵四边形DBCE是平行四边形,
∴CE=BD,CE//BD,DE//BC,
∴∠ECP=∠A=30°,∠CED=∠ADE=∠B=60°,
∵△APD沿PD翻折得到△EPD,
∴∠ADP=∠EDP=30°,AP=PE,
∴∠PAD=∠PDA=30°,
∴AP=PD=PE,
∴∠PED=∠PDE=30°,
∴∠PEC=∠PED+∠DEC=90°,
∵∠ECP=30°,
∴PC=2PE,
∴PC2=PE2+EC2,即4PE2=PE2+()2
解得:PE=2或PE=-2(舍去),
∵P点从A点出发,沿AC以每秒一单位长度的速度向C运动,
∴t=2.
ii当BD为对角线时,
∵BC=BD=AD,∠B=60°,
∴△BCD都是等边三角形,
∴∠ACD=30°,
∵四边形DBCE是平行四边形,
∴平行四边形BCDE为菱形,
∴DE=AD,∠ADC=∠CDE=120°,
又∵CD=CD,
∴△ACD≌△ECD,
∴AC=CE,
∴△ECD是△ACD沿CD翻折得到,
∵△APD沿PD翻折得到△EPD,
∴点P与点C重合,
∴AP=AC=6.
∵P点从A点出发,沿AC以每秒一单位长度的速度向C运动,
∴t=6.
故当t=2或t=6时,以B、C、E、D为顶点的四边形是平行四边形.
【题目】某中学为了了解八年级学生的业余爱好,抽查了部分学生,并制如下表格和条形统计图:
频数 | 频率 | |
体育 | 25 | 0.25 |
美术 | 30 | a |
音乐 | b | 0.35 |
其他 | 10 | 0.1 |
请根据图完成下面题目:
(1)抽查人数为_____人,a=_____.
(2)请补全条形统计图;
(3)若该校八年级有800人,请你估算该校八年级业余爱好音乐的学生约有多少人?