题目内容
【题目】如图,AB是⊙O的直径, , 连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.
(1)若OA=CD=,求阴影部分的面积;
(2)求证:DE=DM.
【答案】
(1)
解:如图,连接OD,
∵CD是⊙O切线,
∴OD⊥CD,
∵OA=CD=,OA=OD,
∴OD=CD=,
∴△OCD为等腰直角三角形,
∴∠DOC=∠C=45°,
∴S阴影=S△OCD﹣S扇OBD=﹣=4﹣π;
(2)
证明:如图,连接AD,
∵AB是⊙O直径,
∴∠ADB=∠ADM=90°,
又∵,
∴ED=BD,∠MAD=∠BAD,
在△AMD和△ABD中,
,
∴△AMD≌△ABD,
∴DM=BD,
∴DE=DM.
【解析】(1)连接OD,根据已知和切线的性质证明△OCD为等腰直角三角形,得到∠DOC=45°,根据S阴影=S△OCD﹣S扇OBD计算即可;
(2)连接AD,根据弦、弧之间的关系证明DB=DE,证明△AMD≌△ABD,得到DM=BD,得到答案.
【考点精析】掌握切线的性质定理和扇形面积计算公式是解答本题的根本,需要知道切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径;在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2).
练习册系列答案
相关题目