题目内容
【题目】对于二次函数y=mx2+(5m+3)x+4m(m为常数且m≠0)有以下三种说法:
①不论m为何值,函数图象一定过定点(﹣1,﹣3);
②当m=﹣1时,函数图象与坐标轴有3个交点;
③当m<0,x≥﹣时,函数y随x的增大而减小;判断真假,并说明理由.
【答案】①是真命题,见解析;②是假命题,见解析;③是假命题,见解析.
【解析】
①根据二次函数y=mx2+(5m+3)x+4m,可进行变形,得到y═(x2+5x+4)m+3x,只要令x2+5x+4=0,则所得的x的值就与m无关,从而可以解答本题;
②将m=-1代入函数解析式,然后分别令x=0和y=0求出相应的y值和x的值,即可解答本题;
③根据抛物线的解析式可以求得对称轴,然后根据m<0,可知在对称轴右侧y随x的增大而减小,然后令对称轴的值等于-,求得m的值然后看m的值是否小于0,即可解答本题.
①是真命题,
理由:∵y=mx2+(5m+3)x+4m=(x2+5x+4)m+3x,
∴当x2+5x+4=0时,得x=-4或x=-1,
∴x=-1时,y=-3;x=-4时,y=-12;
∴二次函数y=mx2+(5m+3)x+4m(m为常数且m≠0)的图象一定过定点(-1,-3),
故①是真命题;
②是假命题,
理由:当m=-1时,则函数为y=-x2-2x-4,
∵当y=0时,-x2-2x-4=0,△=(-2)2-4×(-1)×(-4)=-12<0;当x=0时,y=-4;
∴抛物线与x轴无交点,与y轴一个交点,
故②是假命题;
③是假命题,
理由:∵y=mx2+(5m+3)x+4m,
∴对称轴x=﹣=﹣
,
∵m<0,x≥﹣时,函数y随x的增大而减小,
∴
,得m=
,
∵m<0与m=矛盾,
故③为假命题.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】某单位有职工200人,其中青年职工(20﹣35岁),中年职工(35﹣50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.
表1:小张抽样调查单位3名职工的健康指数
年龄 | 26 | 42 | 57 |
健康指数 | 97 | 79 | 72 |
表2:小王抽样调查单位10名职工的健康指数
年龄 | 23 | 25 | 26 | 32 | 33 | 37 | 39 | 42 | 48 | 52 |
健康指数 | 93 | 89 | 90 | 83 | 79 | 75 | 80 | 69 | 68 | <>60 |
表3:小李抽样调查单位10名职工的健康指数
年龄 | 22 | 29 | 31 | 36 | 39 | 40 | 43 | 46 | 51 | 55 |
健康指数 | 94 | 90 | 88 | 85 | 82 | 78 | 72 | 76 | 62 | 60 |
根据上述材料回答问题:
(1)扇形统计图中老年职工所占部分的圆心角度数为
(2)小张、小王和小李三人中, 的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.