题目内容

如图,AD,A′D′分别是锐角三角形ABC和锐角三角形A′B′C′中BC,B′C′边上的高,且AB=A′B′,A′D′=AD,若使△ABC≌△A′B′C′,请你补充条
BC=B′C′或DC=D′C′或∠C=∠C′或AC=A′C′
BC=B′C′或DC=D′C′或∠C=∠C′或AC=A′C′
.(填写一个你认为适当的条件即可)
分析:已知了AB=A′B′,A′D′=AD;根据斜边直角边定理即可证得Rt△ABD≌Rt△A'B'D',由此可得出∠B=∠B',因此△ABC和△A'B'C'中,已知了AB=A'B',∠B=∠B',只需再添加一组对应角相等或BC=B'C'即可证得两三角形全等.
解答:解:∵AB=A′B′,A′D′=AD,
∴Rt△ABD≌Rt△A'B'D'(HL);
∴∠B=∠B',
又∵AB=A'B',
∴当∠BAC=∠B'A'C'或∠C=∠C'或BC=B'C'时,△ABC≌△A'B'C'.
故填∠BAC=∠B'A'C'或∠C=∠C'或BC=B'C'
点评:本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加;解题关键是通过全等三角形Rt△ABD≌Rt△A'B'D'得出∠B=∠B'的条件.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网