题目内容
【题目】如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,将纸片展平,再次折叠纸片,使点A落在EF上的点N处,并使折痕经过点B,得到折痕BM,再展平纸片,连接MN,BN.下列结论一定正确的是( )
A.B.
C.BM与EN互相平分D.
【答案】D
【解析】
由题意根据折叠与轴对称的性质,可以得出相等的线段或倍数线段,进而对每一个选项进行分析判断即可.
解:由折叠可知AE=MN显然不正确,
AB是Rt△ABM的直角边,而BM为斜边,因此AB=BM不正确;
MN与AB不平行,因此四边形MNBE不是平行四边形,因此BM与EN互相平分不正确;
由折叠可知BN=AB=2BE,在Rt△BNE中,可得∠BNE=30°,因此选项D正确.
故选:D.
【题目】为了解某地区企业信息化发展水平,从该地区中随机抽取50家企业调研,针对体现企业信息化发展水平的A和B两项指标进行评估,获得了它们的成绩(十分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.
a.A项指标成绩的频数分布直方图如下(数据分成6组:,,,,,):
b.A项指标成绩在这一组的是:
7.2 7.3 7.5 7.67 7.7 7.71 7.75 7.82 7.86 7.9 7.92 7.93 7.97
c.两项指标成绩的平均数、中位数、众数如下:
平均数 | 中位数 | 众数 | |
A项指标成绩 | 7.37 | m | 8.2 |
B项指标成绩 | 7.21 | 7.3 | 8 |
根据以上信息,回答下列问题:
(1)写出表中m的值
(2)在此次调研评估中,某企业A项指标成绩和B项指标成绩都是7.5分,该企业成绩排名更靠前的指标是______________(填“A”或“B”),理由是_____________;
(3)如果该地区有500家企业,估计A项指标成绩超过7.68分的企业数量.