题目内容

【题目】如图,在ABCD中,AB=6,BC=4,∠B=60°,点E是边AB上的一点,点F是边CD上一点,将ABCD沿EF折叠,得到四边形EFGH,点A的对应点为点H,点D的对应点为点G.

(1)当点H与点C重合时.
①填空:点E到CD的距离是___;
②求证:△BCE≌△GCF;
③求△CEF的面积;
(2)当点H落在射线BC上,且CH=1时,直线EH与直线CD交于点M,请直接写出△MEF的面积.

【答案】
(1)

解:如图1,

①作CK⊥AB于K,

∵∠B=60°,

∴CK=BCsin60°=4×=2

∵C到AB的距离和E到CD的距离都是平行线AB、CD间的距离,

∴点E到CD的距离是2

故答案为2

②∵四边形ABCD是平行四边形,

∴AD=BC,∠D=∠B,∠A=∠BCD,

由折叠可知,AD=CG,∠D=∠G,∠A=∠ECG,

∴BC=GC,∠B=∠G,∠BCD=∠ECG,

∴∠BCE=∠GCF,

在△BCE和△GCF中,

∴△BCE≌△GCF(ASA);

③过E点作EP⊥BC于P,

∵∠B=60°,∠EPB=90°,

∴∠BEP=30°,

∴BE=2BP,

设BP=m,则BE=2m,

∴EP=BEsin60°=2m×=m,

由折叠可知,AE=CE,

∵AB=6,

∴AE=CE=6﹣2m,

∵BC=4,

∴PC=4﹣m,

在Rt△ECP中,由勾股定理得(4﹣m)2+(m)2=(6﹣2m)2,解得m=

∴EC=6﹣2m=6﹣2×=

∵△BCE≌△GCF,

∴CF=EC=

∴SCEF=××2=


(2)

解:①当H在BC的延长线上,且位于C点的右侧时时,如图2,过E点作EQ⊥BC于Q,

∵∠B=60°,∠EQB=90°,

∴∠BEQ=30°,

∴BE=2BQ,

设BQ=n,则BE=2n,

∴QE=BEsin60°=2n×=n,

由折叠可知,AE=HE,

∵AB=6,

∴AE=HE=6﹣2n,

∵BC=4,CH=1,

∴BH=5,

∴QH=5﹣n,

在Rt△EHQ中,由勾股定理得(5﹣n)2+(n)2=(6﹣2n)2,解得n=

∴AE=HE=6﹣2n=

∵AB∥CD,

∴△CMH∽△BEH,

=,即=

∴MH=

∴EM==

∴SEMF=××2=

②如图3,当H在线段BC上时,过E点作EQ⊥BC于Q,

∵∠B=60°,∠EQB=90°,

∴∠BEQ=30°,

∴BE=2BQ,

设BQ=n,则BE=2n,

∴QE=BEsin60°=2n×=n,

由折叠可知,AE=HE,

∵AB=6,

∴AE=HE=6﹣2n,

∵BC=4,CH=1,

∴BH=3

∴QH=3﹣n

在Rt△EHQ中,由勾股定理得(3﹣n)2+(n)2=(6﹣2n)2,解得n=

∴BE=2n=3,AE=HE=6﹣2n=3,

∴BE=BH,

∴∠B=60°,

∴△BHE是等边三角形,

∴∠BEH=60°,

∵∠AEF=∠HEF,

∴∠FEH=∠AEF=60°,

∴EF∥BC,

∴DF=CF=3,

∵AB∥CD,

∴△CMH∽△BEH,

=,即=

∴CM=1

∴EM=CF+CM=4

∴SEMF=×4×2=4

综上,△MEF的面积为或4


【解析】(1)①解直角三角形即可;
②根据平行四边形的性质和折叠的性质得出∠B=∠G,∠BCE=∠GCF,BC=GC,然后根据AAS即可证明;③过E点作EP⊥BC于P,设BP=m,则BE=2m,通过解直角三角形求得EP=m,然后根据折叠的性质和勾股定理求得EC,进而根据三角形的面积就可求得;
(2)过E点作EQ⊥BC于Q,通过解直角三角形求得EP=n,根据折叠的性质和勾股定理求得EH,然后根据三角形相似对应边成比例求得MH,从而求得CM,然后根据三角形面积公式即可求得.
【考点精析】认真审题,首先需要了解平行四边形的性质(平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分),还要掌握翻折变换(折叠问题)(折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等)的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网