题目内容
【题目】如图,在ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是______.(把所有正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.
【答案】①②④.
【解析】
①在ABCD中,AD=2AB,F是AD的中点,则AF=FD=CD,∠DFC=∠DCF,再根据∠DFC=∠FCB,得到∠DCF=∠BCF即可证明;②延长EF,交CD延长线于M,证明△AEF≌△DMF即可转换得到EF=CF;③由②得到的EF=FM,知S△EFC=S△CFM,由于MC>BE,可得S△BEC≤2S△EFC;④设∠FEC=x,则∠FCE=x,∠DCF=∠DFC=90°﹣x,再分别用x表示出∠DFE和∠AEF,判断即可.
①∵F是AD的中点,
∴AF=FD,
∵在ABCD中,AD=2AB,
∴AF=FD=CD,
∴∠DFC=∠DCF,
∵AD∥BC,
∴∠DFC=∠FCB,
∴∠DCF=∠BCF,
∴∠DCF=∠BCD,故此选项正确;
延长EF,交CD延长线于M,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠A=∠MDF,
∵F为AD中点,
∴AF=FD,
在△AEF和△DFM中,
,
∴△AEF≌△DMF(ASA),
∴FE=MF,∠AEF=∠M,
∵CE⊥AB,
∴∠AEC=90°,
∴∠AEC=∠ECD=90°,
∵FM=EF,
∴FC=EF,故②正确;
③∵EF=FM,
∴S△EFC=S△CFM,
∵MC>BE,
∴S△BEC≤2S△FCM,
∴S△BEC≤2S△EFC,
故S△BEC=2S△CEF错误;
④设∠FEC=x,则∠FCE=x,
∴∠DCF=∠DFC=90°﹣x,
∴∠EFC=180°﹣2x,
∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,
∵∠AEF=90°﹣x,
∴∠DFE=3∠AEF,故此选项正确.
故答案为:①②④.