题目内容
【题目】如图是二次函数y=ax2+bx+c(a≠0)的部分图像,其中点A(-1,0)是x轴上的一个交点,点C是y轴上的交点.
(1)若过点A的直线l与这个二次函数的图像的另一个交点为D,与该图像的对称轴交于点E,与y轴交于点F,且DE=EF=FA.
①求的值;
②设这个二次函数图像的顶点为P,问:以DF为直径的圆能否经过点P?若能,请求出此时二次函数的关系式;若不能,请说明理由.
(2)若点C坐标为(0,-1),设S=a+b+c ,求S的取值范围.
【答案】(1)①;②;(2)
【解析】试题分析:(1)①由A(-1,0),得到OA=1,由DE=EF=FA,得到AO=OM=MN, OC=ND,由OF∥ND,得到,从而得到结论;
②由OA=1,AO=OM=MN,得到OM=MN=1,对称轴为x=1,从而得到b=-2a,抛物线与x轴的另一个交点为(3,0),得到0=9a-6a+c,得到c=-3a,则y=ax2-2ax-3a,得到OC=ND=3a, OF=a,得到D,F,E,P的坐标,进而得到PE=2a,FE=ED=,
当以DF为直径的圆能否经过点P时,PE=FE=ED,有2a=,解方程即可得到结论.
(2)由二次函数y=ax2+bx+c(a≠0)过A(-1,0),C(0,-1),得到c=-1,b=a-1, 故S=2a-2,由a>0,即可得到结论.
试题解析:解:(1)①∵A(-1,0),∴OA=1.∵DE=EF=FA,∴AO=OM=MN,∴OC=ND.∵OF∥ND,∴ ,∴;
②∵OA=1,AO=OM=MN,∴OM=MN=1,∴对称轴为x=1,∴ ,∴b=-2a,抛物线与x轴的另一个交点为(3,0),∴0=9a-6a+c,解得:c=-3a,∴y=ax2-2ax-3a,∴OC=ND=3a,∴OF=a,∴D(2,-3a),F(0,-a),E(1,-2a),P(1,-4a),∴PE=2a,FE=ED=,
当以DF为直径的圆能否经过点P时,PE=FE=ED,∴2a=,解得: (负数舍去),∴,∴.
(2)∵二次函数y=ax2+bx+c(a≠0)过A(-1,0),C(0,-1),∴a-b+c=0,c=-1,∴b=a-1,∴S=a+b+c=a+a-1-1=2a-2.∵a>0,∴S=2a-2>-2.