题目内容
【题目】如图,优弧纸片所在的半径为2,,点为优弧上一点(点不与,重合),将图形沿折叠,得到点的对称点.当与相切时,则折痕的长______.
【答案】
【解析】
根据切线的性质得到∠OBA′=90°,从而得到∠ABA′=120°,就可求出∠ABP,进而求出∠OBP=30°.过点O作OG⊥BP,垂足为G,容易求出OG、BG的长,根据垂径定理就可求出折痕的长.
解:过点O作OH⊥AB,垂足为H,连接OB,如图所示.
∵OH⊥AB,AB=,
∴AH=BH=,
∵OB=2,
∴OH=1.
∴点O到AB的距离为1.过点O作OG⊥BP,垂足为G,如图所示.
∵BA′与⊙O相切,
∴OB⊥A′B.
∴∠OBA′=90°.
∵∠OBH=30°,
∴∠ABA′=120°.
∴∠A′BP=∠ABP=60°.
∴∠OBP=30°.
∴OG=OB=1.
∴BG=,
∵OG⊥BP,
∴BG=PG=,
∴BP=,
∴折痕PB的长为,
故答案为:.
练习册系列答案
相关题目
【题目】某小区号楼对外销售,已知号楼某单元共层,一楼为商铺,只租不售,二楼以上价格如下:第层售价为元/米,从第层起每上升一层,每平方米的售价提高元,反之每降一层,每平方米的售价降低元,已知该单元每套的面积均为米
优惠活动
活动一:若一次性付清所有房款,降价,另免年物业费共元.
活动二:若购买者一次性付清所有房款,降价,无赠送.
(1)请在下表中,补充完整售价(元/米)与楼层(取正整数)之间的的数关系式.
楼层(层) | 楼 | 楼 | ||
售价(元/米) | 不售 |
(2)某客户想购买该单元第层的一套楼房,若他一次性付清购房款,可以参加如图优惠活动.请你帮助他分析哪种优惠方案更合算