题目内容

【题目】如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(友情提醒:正方形的四条边都相等,即AB=BC=CD=DA;四个内角都是90°,即∠A=∠B=∠C=∠D=90°)

(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;
(3)设AP为x,求出BE的长.(用含x的代数式表式)

【答案】
(1)解:如图1,

∵PE=BE,

∴∠EBP=∠EPB.

又∵∠EPH=∠EBC=90°,

∴∠EPH∠EPB=∠EBC∠EBP.

即∠PBC=∠BPH.

∵AD∥BC,

∴∠APB=∠PBC.

∴∠APB=∠BPH.


(2)解:△PHD的周长不变为定值8.

证明:如图2,过B作BQ⊥PH,垂足为Q.

由(1)知∠APB=∠BPH,

∵∠A=∠BQP=90°,BP=BP,

∴△ABP≌△QBP.

∴AP=QP,AB=BQ.

∵AB=BC,

∴BC=BQ.

∵∠C=∠BQH=90°,BH=BH,

∴△BCH≌△BQH.

∴CH=QH.

∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8


(3)解:如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB.

∵EF为折痕,

∴EF⊥BP.

∴∠EFM+∠MEF=∠ABP+∠BEF=90°,

∴∠EFM=∠ABP.

又∵∠A=∠EMF=90°,

∴△EFM≌△BPA.

∴EM=AP=x.

∴在Rt△APE中,

(4BE)2+x2=BE2

解得:


【解析】(1)根据折叠的性质,由PE=BE,得到PE=BE,根据对边对等角得到∠EBP=∠EPB,又∠EPH=∠EBC=90°,得到∠PBC=∠BPH;由AD∥BC,得到∠APB=∠BPH;(2)由(1)知∠APB=∠BPH,根据AAS得到△ABP≌△QBP;得到对应边相等AP=QP,AB=BQ;由AB=BC,得到△BCH≌△BQH,得到CH=QH,求出△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD;(3)根据折叠的性质,得到△EFM≌△BPA,得到对应边EM=AP,在Rt△APE中,根据勾股定理得到BE的代数式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网