题目内容

【题目】已知点P是矩形ABCD边AB上的任意一点(与点A、B不重合)

(1)如图,现将PBC沿PC翻折得到PEC;再在AD上取一点F,将PAF沿PF翻折得到PGF,并使得射线PE、PG重合,试问FG与CE的位置关系如何,请说明理由;

(2)在(1)中,如图,连接FC,取FC的中点H,连接GH、EH,请你探索线段GH和线段EH的大小关系,并说明你的理由;

(3)如图,分别在AD、BC上取点F、C,使得APF=BPC,与(1)中的操作相类似,即将PAF沿PF翻折得到PFG,并将沿翻折得到,连接,取的中点H,连接GH、EH,试问(2)中的结论还成立吗?请说明理由.

【答案】(1)FG∥CE,在矩形ABCD中,∠A=∠B=90°,由题意得,∠G=∠A=90°,∠PEC=∠B=90°,∴∠GEC=90°,∴∠G=∠GEC,∴FG∥CE。

(2)GH=EH。延长GH交CE于点M,由(1)得,FG∥CE,∴∠GFH=∠MCH,∵H为CF的中点,∴FH=CH,又∵∠GHF=∠MHC,∴△GFH≌△MHC,∴GH=HM=,∵∠GEC=90°,∴EH=,∴GH=EH。

(3)(2)中的结论还成立。取PF的中点M,的中点N,∵∠FGP=90°,M为PF的中点,∴,∴GM=PM,∴∠GPF=∠MGP,∴∠GMF=∠GPF+∠MGP=2∠GPF,∵H为的中点,M为PF的中点,∴,同理,HN∥PF,∠,∴GM=HN,HM=EN。∵∠GPF=∠FPA,,又,∴∠GPF=,∴∠GMF=∠,∵,HN∥PF,∴四边形HMPN为平行四边形,∴∠HMF=∠,∴∠GMH=∠HNE,∵GM=HN,HM=EN,∴△GMH≌△HNE,∴GH=HE。

【解析】(1)根据矩形的性质以及轴对称的性质可以得到G=GEC=90°,根据内错角相等,即可证明两

条直线平行;

延长GH交CE于点M,结合(1)中的结论证明GFH≌△MHC,再运用直角三角形斜边上的中线等于

斜边的一半进行证明结论;

取PF的中点M,PC'的中点N,根据直角三角形的斜边上的中线等于斜边的一半以及三角形的中位线

定理得到平行四边形,这几个平行四边形的性质证明要证明的两条线段所在的两个三角形全等,从而证明结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网